Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
NAR Cancer ; 6(2): zcae020, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720882

ABSTRACT

Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.

2.
EBioMedicine ; 102: 105057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490101

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS: We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS: In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION: The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING: The funds are listed in the Acknowledgements section.


Subject(s)
Carcinoma , Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Carcinogenesis/genetics , DNA , Repressor Proteins , Trans-Activators
3.
Front Plant Sci ; 15: 1325365, 2024.
Article in English | MEDLINE | ID: mdl-38439987

ABSTRACT

Chemical priming has emerged as a promising area in agricultural research. Our previous studies have demonstrated that pretreatment with a low concentration of ethanol enhances abiotic stress tolerance in Arabidopsis and cassava. Here, we show that ethanol treatment induces heat stress tolerance in tomato (Solanum lycopersicon L.) plants. Seedlings of the tomato cultivar 'Micro-Tom' were pretreated with ethanol solution and then subjected to heat stress. The survival rates of the ethanol-pretreated plants were significantly higher than those of the water-treated control plants. Similarly, the fruit numbers of the ethanol-pretreated plants were greater than those of the water-treated ones. Transcriptome analysis identified sets of genes that were differentially expressed in shoots and roots of seedlings and in mature green fruits of ethanol-pretreated plants compared with those in water-treated plants. Gene ontology analysis using these genes showed that stress-related gene ontology terms were found in the set of ethanol-induced genes. Metabolome analysis revealed that the contents of a wide range of metabolites differed between water- and ethanol-treated samples. They included sugars such as trehalose, sucrose, glucose, and fructose. From our results, we speculate that ethanol-induced heat stress tolerance in tomato is mainly the result of increased expression of stress-related genes encoding late embryogenesis abundant (LEA) proteins, reactive oxygen species (ROS) elimination enzymes, and activated gluconeogenesis. Our results will be useful for establishing ethanol-based chemical priming technology to reduce heat stress damage in crops, especially in Solanaceae.

4.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38490329

ABSTRACT

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Subject(s)
Chromatin , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Chromatin/genetics , Histones/genetics , Histones/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Gene Expression Profiling , Receptors, Androgen/metabolism , Kinesins/metabolism
5.
Nat Commun ; 15(1): 370, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191552

ABSTRACT

Chloroplast development adapts to the environment for performing suitable photosynthesis. Brassinosteroids (BRs), plant steroid hormones, have crucial effects on not only plant growth but also chloroplast development. However, the detailed molecular mechanisms of BR signaling in chloroplast development remain unclear. Here, we identify a regulator of chloroplast development, BPG4, involved in light and BR signaling. BPG4 interacts with GOLDEN2-LIKE (GLK) transcription factors that promote the expression of photosynthesis-associated nuclear genes (PhANGs), and suppresses their activities, thereby causing a decrease in the amounts of chlorophylls and the size of light-harvesting complexes. BPG4 expression is induced by BR deficiency and light, and is regulated by the circadian rhythm. BPG4 deficiency causes increased reactive oxygen species (ROS) generation and damage to photosynthetic activity under excessive high-light conditions. Our findings suggest that BPG4 acts as a chloroplast homeostasis factor by fine-tuning the expression of PhANGs, optimizing chloroplast development, and avoiding ROS generation.


Subject(s)
Brassinosteroids , Chloroplasts , Reactive Oxygen Species , Plant Growth Regulators , Homeostasis , Transcription Factors/genetics
6.
Oncology ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262376

ABSTRACT

INTRODUCTION: Pseudomyxoma peritonei (PMP) is a disease characterized by progressive accumulation of intraperitoneal mucinous ascites produced by neoplasms in the abdominal cavity. Since the prognosis of patients with PMP remain unsatisfactory, the development of effective therapeutic drug(s) is a matter of pressing concern. Genetic analyses of PMP have clarified the frequent activation of GNAS and/or KRAS. However, the involvement of global epigenetic alterations in PMPs has not been reported. METHODS: To clarify the genetic background of the 15 PMP tumors, we performed genetic analysis using AmpliSeq Cancer HotSpot Panel v2. We further investigated global DNA methylation in the 15 tumors and eight non-cancerous colonic epithelial cells using Methylation EPIC array BeadChip (Infinium 850k) containing a total of 865,918 probes. RESULTS: This is the first report of comprehensive DNA methylation profiles of PMPs in the world. We clarified that the 15 PMPs could be classified into at least two epigenotypes, unique methylation epigenotype (UME) and normal-like methylation epigenotype (NLME), and that genes associated with neuronal development and synaptic signaling may be involved in the development of PMPs. In addition, we identified a set of hypermethylation marker genes such as HOXD1 and TSPYL5 in the 15 PMPs. CONCLUSIONS: These findings may help the understanding of the molecular mechanism(s) of PMP and contribute to the development of therapeutic strategies for this life-threatening disease.

7.
Genes Cells ; 28(12): 825-830, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37803971

ABSTRACT

The 33rd International Conference on Arabidopsis Research (ICAR2023) was held at Makuhari Messe International Conference Hall in Chiba prefecture from June 5 to 9, 2023. This annual conference, which rotates among hosts in North America, Asia-Oceania, and Europe, covers the full range of plant biology research involving Arabidopsis and other plant species. The conference hosted more than 1200 participants, including approximately 800 international attendees from 42 countries (or regions), and featured about 900 oral and poster presentations. Reflecting the conference theme, "Arabidopsis for Sustainable Development Goals (SDGs)," there were numerous exemplary presentations regarding basic plant science using Arabidopsis and translational research conducted to achieve SDGs by exploiting the knowledge gained from Arabidopsis to improve crop production. The conference concluded on a high note, with more than 99% of survey respondents expressing their general satisfaction with ICAR2023. This report aims to summarize the organization, objectives, and outcomes of the conference.


Subject(s)
Arabidopsis , Humans , Arabidopsis/genetics , Asia
8.
Plant Cell ; 35(10): 3662-3685, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37467141

ABSTRACT

Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors generally exhibit hallmarks of rapid evolution, even at the intraspecific level. We used iterative sequence similarity searches coupled with phylogenetic analyses to reconstruct the evolutionary history of HOPZ-ACTIVATED RESISTANCE1 (ZAR1), an atypically conserved NLR that traces its origin to early flowering plant lineages ∼220 to 150 million yrs ago (Jurassic period). We discovered 120 ZAR1 orthologs in 88 species, including the monocot Colocasia esculenta, the magnoliid Cinnamomum micranthum, and most eudicots, notably the Ranunculales species Aquilegia coerulea, which is outside the core eudicots. Ortholog sequence analyses revealed highly conserved features of ZAR1, including regions for pathogen effector recognition and cell death activation. We functionally reconstructed the cell death activity of ZAR1 and its partner receptor-like cytoplasmic kinase (RLCK) from distantly related plant species, experimentally validating the hypothesis that ZAR1 evolved to partner with RLCKs early in its evolution. In addition, ZAR1 acquired novel molecular features. In cassava (Manihot esculenta) and cotton (Gossypium spp.), ZAR1 carries a C-terminal thioredoxin-like domain, and in several taxa, ZAR1 duplicated into 2 paralog families, which underwent distinct evolutionary paths. ZAR1 stands out among angiosperm NLR genes for having experienced relatively limited duplication and expansion throughout its deep evolutionary history. Nonetheless, ZAR1 also gave rise to noncanonical NLRs with integrated domains and degenerated molecular features.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Humans , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Phylogeny , Protein Domains , Plants/metabolism , Plant Immunity/genetics , Carrier Proteins/metabolism
9.
Cancer Sci ; 114(7): 3003-3013, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37082886

ABSTRACT

Lung adenocarcinoma is classified morphologically into five histological subtypes according to the WHO classification. While each histological subtype correlates with a distinct prognosis, the molecular basis has not been fully elucidated. Here we conducted DNA methylation analysis of 30 lung adenocarcinoma cases annotated with the predominant histological subtypes and three normal lung cases using the Infinium BeadChip. Unsupervised hierarchical clustering analysis revealed three subgroups with different methylation levels: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME). Micropapillary pattern (MPP)-predominant cases and those with MPP components were significantly enriched in HME (p = 0.02 and p = 0.03, respectively). HME cases showed a significantly poor prognosis for recurrence-free survival (p < 0.001) and overall survival (p = 0.006). We identified 365 HME marker genes specifically hypermethylated in HME cases with enrichment of "cell morphogenesis" related genes; 305 IME marker genes hypermethylated in HME and IME, but not in LME, with enrichment "embryonic organ morphogenesis"-related genes; 257 Common marker genes hypermethylated commonly in all cancer cases, with enrichment of "regionalization"-related genes. We extracted surrogate markers for each epigenotype and designed pyrosequencing primers for five HME markers (TCERG1L, CXCL12, FAM181B, HOXA11, GAD2), three IME markers (TBX18, ZNF154, NWD2) and three Common markers (SCT, GJD2, BARHL2). DNA methylation profiling using Infinium data was validated by pyrosequencing, and HME cases defined by pyrosequencing results also showed the worse recurrence-free survival. In conclusion, lung adenocarcinomas are stratified into subtypes with distinct DNA methylation levels, and the high-methylation subtype correlated with MPP-predominant cases and those with MPP components and showed a poor prognosis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , DNA Methylation/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Prognosis , Biomarkers , Lung Neoplasms/pathology , Neoplasm Staging , Kruppel-Like Transcription Factors/genetics
10.
Plant Mol Biol ; 112(1-2): 33-45, 2023 May.
Article in English | MEDLINE | ID: mdl-37014509

ABSTRACT

The primary transcript structure provides critical insights into protein diversity, transcriptional modification, and functions. Cassava transcript structures are highly diverse because of alternative splicing (AS) events and high heterozygosity. To precisely determine and characterize transcript structures, fully sequencing cloned transcripts is the most reliable method. However, cassava annotations were mainly determined according to fragmentation-based sequencing analyses (e.g., EST and short-read RNA-seq). In this study, we sequenced the cassava full-length cDNA library, which included rare transcripts. We obtained 8,628 non-redundant fully sequenced transcripts and detected 615 unannotated AS events and 421 unannotated loci. The different protein sequences resulting from the unannotated AS events tended to have diverse functional domains, implying that unannotated AS contributes to the truncation of functional domains. The unannotated loci tended to be derived from orphan genes, implying that the loci may be associated with cassava-specific traits. Unexpectedly, individual cassava transcripts were more likely to have multiple AS events than Arabidopsis transcripts, suggestive of the regulated interactions between cassava splicing-related complexes. We also observed that the unannotated loci and/or AS events were commonly in regions with abundant single nucleotide variations, insertions-deletions, and heterozygous sequences. These findings reflect the utility of completely sequenced FLcDNA clones for overcoming cassava-specific annotation-related problems to elucidate transcript structures. Our work provides researchers with transcript structural details that are useful for annotating highly diverse and unique transcripts and alternative splicing events.


Subject(s)
Alternative Splicing , Manihot , Alternative Splicing/genetics , Manihot/genetics , Manihot/metabolism , Nucleotides , Gene Library , Base Sequence
11.
Commun Biol ; 6(1): 320, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966228

ABSTRACT

Severe genetic redundancy is particularly clear in gene families encoding plant hormone receptors, each subtype sharing redundant and specific functions. Genetic redundancy of receptor family members represents a major challenge for the functional dissection of each receptor subtype. A paradigmatic example is the perception of the hormone (+)-7-iso-jasmonoyl-L-isoleucine, perceived by several COI1-JAZ complexes; the specific role of each receptor subtype still remains elusive. Subtype-selective agonists of the receptor are valuable tools for analyzing the responses regulated by individual receptor subtypes. We constructed a stereoisomer library consisting of all stereochemical isomers of coronatine (COR), a mimic of the plant hormone (+)-7-iso-jasmonoyl-L-isoleucine, to identify subtype-selective agonists for COI1-JAZ co-receptors in Arabidopsis thaliana and Solanum lycopersicum. An agonist selective for the Arabidopsis COI1-JAZ9 co-receptor efficiently revealed that JAZ9 is not involved in most of the gene downregulation caused by COR, and the degradation of JAZ9-induced defense without inhibiting growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Isoleucine/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Repressor Proteins/metabolism , Stereoisomerism , Arabidopsis/genetics , Arabidopsis/metabolism
12.
J Exp Bot ; 74(12): 3579-3594, 2023 06 27.
Article in English | MEDLINE | ID: mdl-36912789

ABSTRACT

Root hairs are single-celled tubular structures produced from the epidermis, which play an essential role in water and nutrient uptake from the soil. Therefore, root hair formation and elongation are controlled not only by developmental programs but also by environmental factors, enabling plants to survive under fluctuating conditions. Phytohormones are key signals that link environmental cues to developmental programs; indeed, root hair elongation is known to be controlled by auxin and ethylene. Another phytohormone, cytokinin, also affects root hair growth, while whether cytokinin is actively involved in root hair growth and, if so, how it regulates the signaling pathway governing root hair development have remained unknown. In this study, we show that the two-component system of cytokinin, which involves the B-type response regulators ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) and ARR12, promotes the elongation process of root hairs. They directly up-regulate ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) encoding a basic helix-loop-helix (bHLH) transcription factor that plays a central role in root hair growth, whereas the ARR1/12-RSL4 pathway does not crosstalk with auxin or ethylene signaling. These results indicate that cytokinin signaling constitutes another input onto the regulatory module governed by RSL4, making it possible to fine-tune root hair growth in changing environments.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Plant Roots/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Growth Regulators/metabolism , Ethylenes/metabolism , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Signal Transduction/physiology , Gene Expression Regulation, Plant
13.
PNAS Nexus ; 2(2): pgad002, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36845349

ABSTRACT

During de novo plant organ regeneration, auxin induction mediates the formation of a pluripotent cell mass called callus, which regenerates shoots upon cytokinin induction. However, molecular mechanisms underlying transdifferentiation remain unknown. Here, we showed that the loss of HDA19, a histone deacetylase (HDAC) family gene, suppresses shoot regeneration. Treatment with an HDAC inhibitor revealed that the activity of this gene is essential for shoot regeneration. Further, we identified target genes whose expression was regulated through HDA19-mediated histone deacetylation during shoot induction and found that ENHANCER OF SHOOT REGENERATION 1 and CUP-SHAPED COTYLEDON 2 play important roles in shoot apical meristem formation. Histones at the loci of these genes were hyperacetylated and markedly upregulated in hda19. Transient ESR1 or CUC2 overexpression impaired shoot regeneration, as observed in hda19. Therefore, HDA19 mediates direct histone deacetylation of CUC2 and ESR1 loci to prevent their overexpression at the early stages of shoot regeneration.

14.
Plant Cell ; 35(6): 1626-1653, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36477566

ABSTRACT

The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.


Subject(s)
Gene Expression Regulation , RNA , RNA, Plant/genetics , RNA/genetics , RNA Interference , Methylation , Biology
15.
Plant Cell Physiol ; 63(12): 1914-1926, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-35880749

ABSTRACT

In this study, we investigated the potential role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seedlings to high-temperature stress. We performed phenotypic, physiological and transcriptome analyses of Arabidopsis kai2 mutants and wild-type (WT) plants under control (kai2_C and WT_C, respectively) and 6- and 24-h heat stress conditions (kai2_H6, kai2_H24, WT_H6 and WT_H24, respectively) to understand the basis for KAI2-regulated heat stress tolerance. We discovered that the kai2 mutants exhibited hypersensitivity to high-temperature stress relative to WT plants, which might be associated with a more highly increased leaf surface temperature and cell membrane damage in kai2 mutant plants. Next, we performed comparative transcriptome analysis of kai2_C, kai2_H6, kai2_H24, WT_C, WT_H6 and WT_H24 to identify transcriptome differences between WT and kai2 mutants in response to heat stress. K-mean clustering of normalized gene expression separated the investigated genotypes into three clusters based on heat-treated and non-treated control conditions. Within each cluster, the kai2 mutants were separated from WT plants, implying that kai2 mutants exhibited distinct transcriptome profiles relative to WT plants. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed a repression in 'misfolded protein binding', 'heat shock protein binding', 'unfolded protein binding' and 'protein processing in endoplasmic reticulum' pathways, which was consistent with the downregulation of several genes encoding heat shock proteins and heat shock transcription factors in the kai2 mutant versus WT plants under control and heat stress conditions. Our findings suggest that chemical or genetic manipulation of KAI2 signaling may provide a novel way to improve heat tolerance in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thermotolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Heat-Shock Response/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, Plant
16.
Cancer Med ; 12(2): 1122-1136, 2023 01.
Article in English | MEDLINE | ID: mdl-35726701

ABSTRACT

Infection with certain viruses is an important cause of cancer. The Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium recently analyzed the whole-genome sequencing (WGS) data from 2656 cases across 21 cancer types, and indicated that Epstein-Barr virus (EBV) is detected in many different cancer cases at a higher frequency than previously reported. However, whether EBV-positive cancer cases detected by WGS-based screening correspond to those detected by conventional histopathological techniques is still unclear. In this study, to elucidate the involvement of EBV in various cancers, we reanalyzed the WGS data of the PCAWG cohort combined with the analysis of clinical samples of gastric and pancreatic cancer in our cohort. Based on EBV copy number in each case, we classified tumors into three subgroups: EBV-High, EBV-Low, and EBV-Negative. The EBV-High subgroup was found to be EBV-positive in the cancer cells themselves, whereas the EBV-Low subgroup was EBV-positive in the surrounding lymphocytes. Further, the EBV-Low subgroup showed a significantly worse prognosis for both gastric cancer and across cancer types. In summary, we classified tumors based on EBV copy number and found a unique cancer subgroup, EBV-positive in the surrounding lymphocytes, which was associated with a poor prognosis.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/diagnosis , Lymphocytes/pathology , Stomach Neoplasms/pathology , Prognosis
17.
Plant Cell Physiol ; 63(12): 1900-1913, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-35681253

ABSTRACT

Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Drought Resistance , Germination/genetics , Abscisic Acid/metabolism , Droughts , Gene Expression Regulation, Plant , Intracellular Signaling Peptides and Proteins/metabolism
18.
EBioMedicine ; 98: 104844, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38251469

ABSTRACT

BACKGROUND: DNA methylation accumulates in non-malignant gastric mucosa after exposure to pathogens. To elucidate how environmental, methylation, and lifestyle factors interplay to influence primary gastric neoplasia (GN) risk, we analyzed longitudinally monitored cohorts in Japan and Singapore. METHODS: Asymptomatic subjects who underwent a gastric mucosal biopsy on the health check-up were enrolled. We analyzed the association between clinical factors and GN development using Cox hazard models. We further conducted comprehensive methylation analysis on selected tissues, including (i) mucosae from subjects developing GN later, (ii) mucosae from subjects not developing GN later, and (iii) GN tissues and surrounding mucosae. We also use the methylation data of mucosa collected in Singapore. The association between methylation and GN risk, as well as lifestyle and methylation, were analyzed. FINDINGS: Among 4234 subjects, GN was developed in 77 subjects. GN incidence was correlated with age, drinking, smoking, and Helicobacter pylori (HP) status. Accumulation of methylation in biopsied gastric mucosae was predictive of higher future GN risk and shorter duration to GN incidence. Whereas methylation levels were associated with HP positivity, lifestyle, and morphological alterations, DNA methylation remained an independent GN risk factor through multivariable analyses. Pro-carcinogenic epigenetic alterations initiated by HP exposure were amplified by unfavorable but modifiable lifestyle choices. Adding DNA methylation to the model with clinical factors improved the predictive ability for the GN risk. INTERPRETATION: The integration of environmental, lifestyle, and epigenetic information can provide increased resolution in the stratification of primary GN risk. FUNDING: The funds are listed in Acknowledgements section.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/etiology , Stomach Neoplasms/genetics , Gastric Mucosa , Life Style , Epigenesis, Genetic
19.
Plant Mol Biol ; 110(3): 269-285, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35969295

ABSTRACT

External application of ethanol enhances tolerance to high salinity, drought, and heat stress in various plant species. However, the effects of ethanol application on increased drought tolerance in woody plants, such as the tropical crop "cassava," remain unknown. In the present study, we analyzed the morphological, physiological, and molecular responses of cassava plants subjected to ethanol pretreatment and subsequent drought stress treatment. Ethanol pretreatment induced a slight accumulation of abscisic acid (ABA) and stomatal closure, resulting in a reduced transpiration rate, higher water content in the leaves during drought stress treatment and the starch accumulation in leaves. Transcriptomic analysis revealed that ethanol pretreatment upregulated the expression of ABA signaling-related genes, such as PP2Cs and AITRs, and stress response and protein-folding-related genes, such as heat shock proteins (HSPs). In addition, the upregulation of drought-inducible genes during drought treatment was delayed in ethanol-pretreated plants compared with that in water-pretreated control plants. These results suggest that ethanol pretreatment induces stomatal closure through activation of the ABA signaling pathway, protein folding-related response by activating the HSP/chaperone network and the changes in sugar and starch metabolism, resulting in increased drought avoidance in plants.


Subject(s)
Manihot , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Droughts , Ethanol/pharmacology , Gene Expression Regulation, Plant , Heat-Shock Proteins/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Stress, Physiological/genetics , Sugars/metabolism , Water/metabolism
20.
Plant Cell Physiol ; 63(9): 1181-1192, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36003026

ABSTRACT

Water scarcity is a serious agricultural problem causing significant losses to crop yield and product quality. The development of technologies to mitigate the damage caused by drought stress is essential for ensuring a sustainable food supply for the increasing global population. We herein report that the exogenous application of ethanol, an inexpensive and environmentally friendly chemical, significantly enhances drought tolerance in Arabidopsis thaliana, rice and wheat. The transcriptomic analyses of ethanol-treated plants revealed the upregulation of genes related to sucrose and starch metabolism, phenylpropanoids and glucosinolate biosynthesis, while metabolomic analysis showed an increased accumulation of sugars, glucosinolates and drought-tolerance-related amino acids. The phenotyping analysis indicated that drought-induced water loss was delayed in the ethanol-treated plants. Furthermore, ethanol treatment induced stomatal closure, resulting in decreased transpiration rate and increased leaf water contents under drought stress conditions. The ethanol treatment did not enhance drought tolerance in the mutant of ABI1, a negative regulator of abscisic acid (ABA) signaling in Arabidopsis, indicating that ABA signaling contributes to ethanol-mediated drought tolerance. The nuclear magnetic resonance analysis using 13C-labeled ethanol indicated that gluconeogenesis is involved in the accumulation of sugars. The ethanol treatment did not enhance the drought tolerance in the aldehyde dehydrogenase (aldh) triple mutant (aldh2b4/aldh2b7/aldh2c4). These results show that ABA signaling and acetic acid biosynthesis are involved in ethanol-mediated drought tolerance and that chemical priming through ethanol application regulates sugar accumulation and gluconeogenesis, leading to enhanced drought tolerance and sustained plant growth. These findings highlight a new survival strategy for increasing crop production under water-limited conditions.


Subject(s)
Arabidopsis , Droughts , Abscisic Acid/metabolism , Arabidopsis/metabolism , Ethanol/metabolism , Gene Expression Regulation, Plant , Plant Stomata/physiology , Plants, Genetically Modified/metabolism , Stress, Physiological/genetics , Sugars/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...